B.SC. HONS. BIOTECHNOLOGY- 4TH SEMESTER UNIT PLANS PLANT BIOTECHNOLOGY

Sr. No.	Teaching Points	Specific Objectives	Methods / Approaches / Techniques	Resources	
1	plant molecular biotechnology and techniques for plant genetic manipulations.	Genetic material of plant cells with an introduction to chloroplast and mitochondrial DNA. Plant Promoter, Plant Selection markers and reporter genes. Transformation of plant cells; different type of vectors including viral vectors and their benefits.	Classroom Lectures. Text notes. Presentation	Reference Books: 1. Draper, J.R., Scott. P., Armitage, R. Walden (1988). Plant Genetic Transformation and Gene Expression – A	
2	Modes of gene delivery in plants	Particle bombardment, electroporation, microinjection; Advantages and disadvantages Agrobacterium mediated gene transfer, natural pathogen mode of infection, vir gene functions, Ti / Ri plasmids, Screening and selection of transformants, PCR and hybridization methods; Transgene selection and silencing; Generation and maintenance of transgenic plants.	Classroom Lectures. Text notes. Presentation	Laboratory Manual. BlackaScientific Publications, Oxford. 2. Ashihara et al. (2011) Plant Metabolism and Biotechnology, John Wiley & Sons, Ltd. ISBN: 978-0-470- 74703-2 3. Old, R.W., and	
3	Transgenic plants	Genetic modification of plants for herbicide resistance, Pest resistance, virus resistance Bacterial and fungal resistance. : Delayed fruit ripening, improved protein composition. Bt cotton, golden rice and some others as examples.	Classroom Lectures. Text notes. Presentation	Primrose, S.B. (2004). Principles of Gene Manipulation: An Introduction to Genetic Engineering. Blackwell Scientific Publications, Oxford. 4. Peter J. Lea and	
4	Products and applications	Plant cell as factories for production of industrial enzymes, biodegradable plastics, antibodies, edible vaccines; manipulation of metabolic pathways for production of fatty acids, industrial oils, terpenoids, flavonoids.	Classroom Lectures. Text notes. Presentation	Richard C. Leegood, Plant Biochemistry and Molecular Biology, Wiley Publishing. 5. Singh R.P. & Jaiwal P.K. (2003) Plant Genetic Engineering Vol. 1 – 4. SCI Tech Publishing LLC, U.S.A. 6. Gupta, P.K. (1990). An Introduction to Biotechnology, Rastogi Publications, Meerut.	

(i) Printed Pages : 3]

Roll No.

(ii) Questions :9]

Sub. Code	:	0	9	5	8
Exam. Code	:	0	0	3	6

B.Sc. (Hons.) 4th Semester Examination

1047

BIOTECHNOLOGY (Plant Biotechnology) Paper : BIOT-Sem-IV-III-T

Time : 3 Hours]	[Max. Marks : 67

Note :- Attempt *five* questions in all by selecting *one* question from each Unit. Question No. 1 is compulsory. All questions carry equal marks except question No. 1.

Compulsory Question

- I. (a) What is selectable marker ?
 - (b) What is the source of 35s promoter and its role ?

N-455

....

(1)

Turn Over

- (c) Role of right and left borders in Ti plasmid ?
- (d) What is double selection of transformants ?
- (e) What is gene gun method of gene delivery ?
- (f) Name two industrial enzymes which can be produced in plants ?
- (g) Round up Maize ? 2,2,2,2,2,3

Unit-I

- 2. (a) What are Promoters ? Discuss the various types of promoters used for gene expression in plant ?
 - (b) Give a detail account of various viral vectors used for plant transformation.6,7
- 3. (a) How are chloroplast and mitochondrial DNA structurally vary ?
 - (b) Describe, how are Binary and Co-integrate vectors designed ?6,7

Unit-II

- 4. (a) Discuss the direct gene delivery systems used to transform monocot plants.
 - (b) Discuss the role of vir genes in transfer of t-DNA in plants.
 8,5

N-455 (2)

5.	(a)	How is gene silencing technique applied to develop better quality transgenic crops ?	
	(b)	Mention the PCR based methods for selection of transformants ?	8,5
		Unit-III	
6.	(a)	How are herbicide resistant plants developed ? Explain with the help of Glufosinate resistant plants.	
	(b)	Give an account of developing transgenic golden rice and the genes involved in the same.	7,6
7.	(a)	Give a detailed account of how is Bt cotton crops developed.	
	(b)	How is plant genetically modified to improve its protein composition ?	7,6
		Unit-IV	
8.	meta	v can we enhance production of secondary abolites using plant cells as biological factories ? ain with various examples.	13
9.	Wha	t kind of manipulation is required in the	

metabolic pathways of terpenoids to enhance their production ?

N-455 (3)

Printed Pages: 3

Questions

Roll No				
Sub. Code :	0	9	7	9
Exam. Code :	0	0	3	6

B.Sc. (Hons.) Biotechnology 4th Semester

1048

PLANT BIOTECHNOLOGY

Paper-BIOT-Sem-IV-III-T

Time Allowed : Three Hours]

[Maximum Marks : 67

Note :-- Attempt FIVE questions in all, selecting ONE question compulsorily from each unit. Q. No. 1 is compulsory.

Discuss the following in brief :---1.

:9

- (a) Co-integrated vector.
- (b) Infection pattern of A. tumefaciens.
- (c) PCR based genetic transformation of plants.
- (d) Caulimo-virus based vectors.
- Golden rice. (e)

5×3

UNIT-I

Describe the method of chloroplast transformation, giving (a) 2. its advantages and disadvantages.

(b) Discuss the role of suitable plant promoters in genetic 9,4 transformation.

0979/LSL-0038

1

[Turn over

(i)

(ii)

- (a) What are reporter genes? Discuss some important reporter genes used in selection and transformation of plants.
 - (b) Discuss the salient features of mitochondrial genome. 9,4

UNIT-II

- 4. (a) Explain the various Cloning strategies by using Ti Plasmid.
 - (b). Write a brief note on Ri plasmid. 9,4
- 5. (a) Discuss the techniques of Particle bombardment for DNA transformation in plants. What are its advantages over other methods used for direct DNA delivery ?
 - (b) Briefly discuss Gene silencing in plants. 9,4

UNIT-III

- (a) Describe the techniques by which you can improve the storage proteins in plants.
 - (b) How can shelf life of fruits and flowers be increased ? 9,4
- 7. (a) How can herbicide resistant plants be raised for Triazine and Phosphinothricin ?

(b) What are cry proteins ? Discuss their significance in brief. 9,4

2

0979/LSL-0038

UNIT-IV

- 8. (a) Explain giving suitable examples the production of industrially important products in plants.
 - (b) Discuss the importance of edible vaccines over conventional vaccines. 9,4
- 9. (a) What are biodegradable plastics? Discuss the manipulation of their metabolic pathways for enhancing and modifying their production in plants.
 - (b) What are Plantibodies ? How are these obtained ? 9,4

0979/LSL-0038

3

600

SESSION 2021-22

THEORY: 67 MARKS B. Sc. HONS. BIOTECHNOLOGY- 4 SEM ASSESSMENT: 08 MARKS

Paper: Agro & Industrial Biotechnology

Sr. no.	Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
1	Basic concept of agriculture as industry:	Industrially important microbes, its screening, selection and identification. Maintenance and preservation of industrially important microbial cultures. Differences between microbial industrial process and chemical industrial process.	Objective: This course will introduce students to the concepts of agriculture as industry. This course will help students to understand the application of fundamental concepts like transgenic approaches to improve crop plants, microbial culture maintenance, and metabolite purification at industrial level.	Classroom teaching. Examples from textbooks, life. Presentation.	 Marwaha, S.S., Arora, J.K. (2003). Biotechnological strategies in agro-Processing (Asiatech publishers Inc. New Delhi, India). Stanbury, P.F., Whitaker A. (2011) 2nd edition. Principles of fermentation technology. Singh, BD. (2008). Biotechnology: Expanding horizons (Kalyani Publishers, India). A. Patel A.H. (2007). Industrial microbiology

2	Improvement	, mutational	Classroom	(New Age
	programme of	programme of	teaching.	International
	industrial	penicillin	teaching.	Publishers). 5.
	microbes	producing	Examples	Loessner, J.
		microorganisms,	from	5. M, Jay J.M,
		selection pressure	textbooks,	D.A. Golden
		in maintaining the	life.	(2005). Modern
		hyper producer,		food
		lowering of	Presentation.	microbiology
		production due to		(Golden
		reversal of		Springer).
		mutations, media		6. 6. Cappuccino
		formulation and		J.G., Sherman
		process		N. (2007).
		optimization of		Microbiology: A
		industrial and agro		laboratory
		industrial		manual (Pearson
		microbes.		Benjamin
3	Microbes in	• : Introduction	Classroom	Cummings).
	agro industries	of primary and	teaching.	
	and industrial	secondary		
	biotechnology:	metabolites,	Examples	
		production of	from	
		vitamin B12,	textbooks,	
		alcohol, wine,	life.	
		beer, cheese,		
		bread, citric	Presentation.	
		acid, gluconic		
		acid, antibiotics		
		(penicillin),		
		enzymes		
		(amylases,		
		cellulases,		
		lipases and		
		proteases) and		
		their industrial		
		applications		
4	Emerging	• production of	Classroom	
	energy	vermiculture,	teaching.	
	technologies	composting,		
	in agro	herbicides and	Examples	
	industries:	biopesticides,	from	
		production of	textbooks,	

1	1:0	
biofertilizers:	life.	
Blue green		
algae, azolla,	Presentation.	
fungi,		
mycorrhiza		
(VAM),		
bacteria –		
Azospirrilum,		
microbial		
biotransformati		
ons, single cell		
proteins		
(bacterial,		
fungal and		
algal).		

Question bank:

1. Explain in detail the traditional and modern biotechnology outlook with suitable examples. 2. Comment on Historical overview of Industrial Fermentation Process some few methods and their respective advantages and disadvantages.

2. Write in detail about upstream and downstream processing for obtaining product of your interest through modern biotechnology. Present the above process in the form of flow chart/block diagram or pictorial representation.

3. Write in detail about downstream processing for obtaining product of your interest through modern biotechnology.

4. What are the main utilities of Fermentor? Describe functions of main components of the fermentor.

5. What is the main role of microorganism in fermentation? Explain in detail the design and selection of a strain for the fermentation process.

6. Comment on Process flow sheeting –Elaborate the block diagrams, draw a pictorial representation for any one product of your interest.

7. Write a detailed note on the Biochemistry of Fermentation by the microbes. .

8. .Write short note on the different types of Batch fermentation &Fed Batch Fermentation

B.Sc. Hons Biotechnology 2021-22 Semester 4

Subject:- Immunology

Total units= 4 Theory marks = 67 Internal assessment= 8 Total marks =75

UNIT-I						
Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links		
Complement system	Function, Components- Classic, Alternative, Mannose binding proteins, activation, Regulation of the Complement System, Biological Consequences of Complement Activation.	To understand general aspects of immune system like different components of the	classroom teaching with examples	Kuby Immunology (2006) by Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne,		
Lymphocyte Trafficking	Adhesion molecules (Integrin, Selectin, Cadherin family and Ig Superfamily)	immune system, and complement system		Janis Kuby (W.H. Freeman).		

Question Bank

Long answer type questions

- 1. Give the history of immunology
- 2. Explain Mannose binding proteins,
- 3. Describe different types of Cell surface proteins
- 4. Describe the Cell Adhesion molecules
- 5. Describe lymphocyte trafficking
- 6. Name the different types of phagocytic cells with well labeled diagrams.
- 7. Explain the process of Classic.

Short answer type questions

- 1. Define immunology
- 2. Define Cadherin family
- 3. What are dendritic cells
- 4. Give the function of Complement System
- 5. Give the Biological Consequences of Complement Activation.
- 6. Differentiate between innate and adaptive immunity

7. Differentiate between B and T lymphocytes.

<u>Unit 2</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
 Hypersensitivity Autoimmunity 	Type I, Type II, Type III and Type IV Hypersensitivity reactions and their implications. Organ specific autoimmune diseases: Hashimoto's Thyroditis, Insulin- dependent Diabetes Mellitus, Grave's disease, Mysthenia Gravis. Systemic Autoimmune Disease: Systemic lupus Erythmatosus (SLE)	To understand the Generation and functions of these components, the antigen and its characterstics to cause the disease.	Lecture cum discussion	Kuby Immunology (2006) by Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby (W.H. Freeman).

Question Bank

Long answer type questions

- 1. Describe the primary lymphoid organs
- 2. Describe the secondary lymphoid organs
- 3. Give the factors affecting the antigenicity of the antigens
- 4. Explain the cross reactivity of the antigen
- 5. Give the immunoglobulin superfamily
- 6. Describe pattern recognition receptors
- 7. What are cell adhesion molecules

Short answer type questions

- 1. Define antigen
- 2. Define immunogen
- 3. Difference between antigen and immunogen
- 4. What are haptens
- 5. Define epitopes
- 6. What are cell adhesion molecules
- 7. What are cell surface proteins

<u>Unit- 3</u>

Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links
-------	-----------------	------------------------	---------------------------------------	------------------------

	Immunologic Basis of	То	classroom	Kuby
	Graft Rejection, Clinical	understand	teaching	Immunology
Transplantation	Manifestations of Graft	the	with the use	(2006) by
immunology	Rejection, General	working of	of	Thomas J.
	Immunosuppressive	antibodies	blackboard	Kindt,
	Therapy, Specific	to kill the		Richard A.
	Immunosuppressive	pathogen		Goldsby,
	Therapy, Immune	and in		Barbara A.
	Tolerance to Allografts,	immune		Osborne,
	Clinical Transplantation	system.		Janis Kuby
		То		(W.H.
	principles of vaccination,	understand		Freeman).
	passive & active	the role of		
	immunization,	MHC in		
	immunization programs,	recognition		
	adjuvants, bacterial	of self and		
	vaccines, viral vaccines,	non self		
	polysaccharide vaccines,	cells.		
	DNA vaccines,			
	recombinant vaccines,			
Vaccines and	vaccines to other			
Vaccination	infectious agents, tumor			
	vaccines.			

Question Bank

Long answer type questions

- 1. Give the different types of vaccines
- 2. What are MHC and give its types
- 3. Explain the processing of antigens in different types of grafts
- 4. Give the functioning of antibodies and their structures
- 5. Explain the general organization and inheritance of MHC genes
- 6. Explain the types of vaccines

Short answer type questions

- 1. What are antibodies
- 2. Give full form of MHC
- 3. Give types of MHC
- 4. Give the role of recombinant vaccines
- 5. Which antibody can cross the placenta and give its role
- 6. Which antibodies are involved in inflammatory responses

		<u>Unit 4</u>		
Торіс	Teaching points	Specific objectives	Methods /approaches /techniques	Resources and links

	Production of	The students	classroom	Kuby
1. Hybridoma	Monoclonal	will gain the	teaching	Immunology
Technology	Antibodies,	knowledge of	with power	(2006) by
	applications of	basic	point	Thomas J.
2. Antigen–Antibody	polyclonal and	immunological	presentation	Kindt,
interactions	monoclonal antibodies.	techniques.	of the topic	Richard A.
	Strength of		hybridoma	Goldsby,
	interaction, cross		technology	Barbara A.
	reactivity, antibody			Osborne,
	affinity, avidity.			Janis Kuby
	Antigen-antibody			(W.H.
	interactions as tools			Freeman).
	for research and			Delves PJ,
	diagnosis: precipitation			Martin SJ,
	and agglutination			Burton DR,
	reactions,			Roitt IM.
	immunodiffusion,			Roitt's
	immunoelectrophoresis,			essential
	immunoassays,			immunology.
	Enzyme linked			Wiley
	immunosorbent assay			Blackwell;
	(ELISA),			2011.
	Radioimmunoassay			
	(RIA), western blot,			
	Immunofluorescence.			

Question Bank

Long answer type questions

- 1. Explain the production of monoclonal antibodies
- 2. Give various functions of monoclonal antibodies
- 3. Describe the types of ELISA with well labeled diagrams
- 4. Give difference between immunodiffusion and immunoprecipitation
- 5. Explain western blot
- 6. Give the various types of immunodiagnostic techniques
- 7. Give applications of polyclonal antibodies

Short answer type questions

- 1. Define monoclonal
- 2. Give full form of ELISA and RIA
- 3. What are immunodiagnostic techniques
- 4. Explain cross reactivity
- 5. Define avidity and affinity

Biophysical and BIO-ANALYTICAL TOOLS

		BIO-AN	ALYTICAL TOOLS	
UNIT	TOPIC: TEACHING POINTS	OBJECTIVES	METHODS APPROACHES	RESORURCES & LINKS
			TECHNIQUES	
I	Simple microscopy, phase	Apprising students	Classroom teaching with relevant examples from	1. Karp, G. 2010. Cell and Molecular Biology: Concepts and Experiments.
	contrast microscopy, florescence	with tools and	textbooks recommended	6th Edition. John Wiley& Sons. Inc.
	and electron microscopy (TEM	techniques used in	and presentations	
	and SEM), pH meter, absorption	study of		
	and emission spectroscopy	biotechnology.		
II	Principle and law of absorption			
	fluorimetry, colorimetry,			
	spectrophotometry (visible, UV,			
	infrared), centrifugation, cell			
	fractionation techniques,			
	isolation of sub-cellular			
	organelles and particles.			
III	Introduction to the principle of			
	chromatography. Paper			2. De Robertis, E.D.P. and De Robertis, E.M.F. 2006. Cell and
	chromatography, thin layer			Molecular Biology. 8th edition.
	chromatography, column			Lippincott Williams and Wilkins, Philadelphia.
	chromatography: silica and gel			
	filtration, affinity and ion			
	exchange chromatography, gas			
	chromatography, HPLC.			
IV	Introduction to electrophoresis.			
	Starch-gel, polyacrylamide gel			3. Cooper, G.M. and Hausman, R.E.
	(native and SDS-PAGE), agarose-			2009. The Cell: A Molecular
	gel electrophoresis, pulse field gel			Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.;
	electrophoresis, immuno-			Sinauer Associates, MA.
	electrophoresis, isoelectric			4. Becker, W.M., Kleinsmith, L.J.,
	focusing, Western blotting.			Hardin. J. and Bertoni, G. P. 2009 The
	Introduction to Biosensors and			World of the Cell.7th edition. Pearson Benjamin Cummings
	Nanotechnology and their			Publishing, San Francisco.
	applications.			

ANIMAL BIOTECHNOLOGY

			1	
UN IT	TOPIC: TEACHING POINTS	OBJECTIVES	METHODS APPROACHES TECHNIQUES	RESORURCES & LINKS
I	Organotypic and histotypic cultures: Organotypic culture: Gas and nutrient exchange, structure integrity, growth, differentiation, advantages and applications. advantages and applications. Methods, of histotypic culture and dimensional culture of tissue engineering, cells of tissue imaging in 3D construct. Imaging In vitro fertilization (IVF) in Humans Humans and Embryo Cells as virus host/cell as protein factory/cell as protein antigen as antigen as antigen	Apprising students with tools and techniques used in study of biotechnology.	Classroom teaching with relevant examples from textbooks recommended and presentations	 Culture of animal cells (2009). RI Freshney, Sixth ed. John Willey & Sons. 3. Culture of animal cells: A manual of basic technique and specialized applications. John Wiley & Sons, (2011). 4. Animal cell culture and technology by Michaelis Butler. BIOS Scientific Publisher (2003). 5. Animal cell biotechnology XVI 2nd Edition (2007) by Ralf Partner Humana Press. 6. Textbook of animal biotechnology (2012) by B Singh, S K Gautam, and M S Chauhan

|--|